Abstract

PurposeVirtual single source computed tomography (VSS-CT) acquisition on a dual source CT (DSCT) has been demonstrated to allow for dose-neutral intra-individual comparison of three acquisition protocols at different radiation dose levels (RDL) within one acquisition in a phantom. The purpose of this study was twofold: first to evaluate the applicability of VSS-CT in patients and second to optimize the task-dependent trade-off between radiation dose and image quality of lower extremity CT angiography (run-off CTA). Material and methodsIn this IRB-approved prospective study 52 patients underwent run-off CTA between 06/2012 and 06/2013. VSS-CT acquisition was conducted using a first generation DSCT applying equal X-ray tube settings (120 kVp), collimation (2 × 32 × 0.6 mm), and slice thickness (1.0 mm) but different effective tube current-time products (tube A: 80 mAs, tube B: 40 mAs). Three different image datasets representing three different radiation dose levels (RDL40, RDL80, RDL120) were reconstructed using a soft kernel from the raw data of tube B, tube A or both tubes combined. Dose length products (DLP) of each raw data set were documented. Quantitative image quality (IQ) was assessed for five anatomical levels using image noise and contrast-to-noise ratio (CNR). To investigate dose efficiency of each acquisition, the dose-weighted CNR (CNRD) was determined. Qualitative IQ was evaluated by two blinded readers in consensus using a 5-point Likert scale and compared with a Friedman- and posthoc Wilcoxon test. ResultsMean DLP was 200 ± 40, 400 ± 90 and 600 ± 130 mGy·cm for the RDL40, RDL80 and RDL120, respectively. Image noise and CNR were best for RDL120 and decreased significantly for RDL80 and RDL40, independent of the anatomic level (p < 0.001). CNRD showed no significant differences at the abdominal and pelvic level between the investigated radiation dose levels. However, for thigh to foot level a significant increase of CNRD was noted between RDL120, RDL80 and RDL40. Significant differences of qualitative IQ were observed between RDL120 and RDL40 from the abdominal to the foot level, whereas no difference was seen for the other dose levels. ConclusionRadiation dose splitting with VSS-CT can be applied to run-off CTA facilitating intra-individual comparison of different acquisition protocols without additional radiation exposure. Furthermore, a radiation dose reduction potential for run-off CTA of approximately 1/3 as compared to the acquisition protocol recommended by the manufacturer could be identified in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call