Abstract

ObjectivesTo evaluate the performance of artificial intelligence (AI) in the preoperative detection of lung metastases on CT. Materials and methodsPatients who underwent lung metastasectomy in our institution between 2016 and 2020 were enrolled, their preoperative CT reports having been performed before an AI solution (Veye Lung Nodules, version 3.9.2, Aidence) became available as a second reader in our department.All CT scans were retrospectively processed by AI. The sensitivities of unassisted radiologists (original CT radiology reports), AI reports alone and both combined were compared. Ground truth was established by a consensus reading of two radiologists, who analyzed whether the nodules mentioned in the pathology report were retrospectively visible on CT. Multivariate analysis was performed to identify nodule characteristics associated with detectability. ResultsA total of 167 patients (men: 62.9 %; median age, 59 years [47–68]) with 475 resected nodules were included. AI detected an average of 4 nodules (0–17) per CT, of which 97 % were true nodules. The combination of radiologist plus AI (92.4 %) had significantly higher sensitivity than unassisted radiologists (80.4 %) (p < 0.001). In 27/57 (47.4 %) patients who had multiple preoperative CT scans, AI detected lung nodules earlier than the radiologist. Vascular contact was associated with non-detection by radiologists (OR:0.32[0.19, 0.54], p < 0.001), whilst the presence of cavitation (OR:0.26[0.13, 0.54], p < 0.001) or pleural contact (OR:0.10[0.04, 0.22], p < 0.001) was associated with non-detection by AI. ConclusionAI significantly increases the sensitivity of preoperative detection of lung metastases and enables earlier detection, with a significant potential benefit for patient management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.