Abstract

This study introduces a Multiple Linear Regression (MLR) model that functions as a virtual sensor for estimating the strain-hardening rate of austenitic stainless steels, represented by the Hardening Rate of Hot rolled and annealed Stainless steel sheet (HRHS) parameter. The model correlates tensile strength (Rm) with cold thickness reduction and chemical composition, evidencing a robust linear relationship with an R-coefficient above 0.9800 for most samples. Key variables influencing the HRHS value include Cr, Mo, Si, Ni, and Nb, with the MLR model achieving a correlation coefficient of 0.9983. The Leave-One-Out Cross-Validation confirms the model’s generalization for test examples, consistently yielding high R-values and low mean squared errors. Additionally, a simplified HRHS version is proposed for instances where complete chemical analyses are not feasible, offering a practical alternative with minimal error increase. The research demonstrates the potential of linear regression as a virtual sensor linking cold strain hardening to chemical composition, providing a cost-effective tool for assessing strain hardening behaviour across various austenitic grades. The HRHS parameter significantly aids in the understanding and optimization of steel behaviour during cold forming, offering valuable insights for the design of new steel grades and processing conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.