Abstract
Plasmodium vivax (P. vivax) is one of the highly prevalent human malaria parasites. Due to the presence of extravascular reservoirs, P. vivax is extremely challenging to manage and eradicate. Traditionally, flavonoids have been widely used to combat various diseases. Recently, biflavonoids were discovered to be effective against Plasmodium falciparum. In this study, in silico approaches were utilized to inhibit Duffy binding protein (DBP), responsible for Plasmodium invasion into red blood cells (RBC). The interaction of flavonoid molecules with the Duffy antigen receptor for chemokines (DARC) binding site of DBP was investigated using a molecular docking approach. Furthermore, molecular dynamic simulation studies were carried out to study the stability of top-docked complexes. The results showed the effectiveness of flavonoids, such as daidzein, genistein, kaempferol, and quercetin, in the DBP binding site. These flavonoids were found to bind in the active region of DBP. Furthermore, the stability of these four ligands was maintained throughout the 50 ns simulation, maintaining stable hydrogen bond formation with the active site residues of DBP. The present study suggests that flavonoids might be good candidates and novel agents against DBP-mediated RBC invasion of P. vivax and can be further analyzed in in vitro studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.