Abstract

Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two basic approaches of computer-aided drug design (CADD) used in modern drug discovery and development programme. Virtual screening (or in silico screening) has been used in drug discovery program as a complementary tool to high throughput screening (HTS) to identify bioactive compounds. It is a preliminary tool of CADD that has gained considerable interest in the pharmaceutical research as a productive and cost-effective technology in search for novel molecules of medicinal interest. Docking is also used for virtual screening of new ligands on the basis of biological structures for identification of hits and generation of leads or optimization (potency/ property) of leads in drug discovery program. Hence, docking is approach of SBDD which plays an important role in rational designing of new drug molecules. Quantitative structure-activity relationship (QSAR) is an important chemometric tool in computational drug design. It is a common practice of LBDD. The study of QSAR gives information related to structural features and/or physicochemical properties of structurally similar molecules to their biological activity. In this paper, a comprehensive review on several computational tools of SBDD and LBDD such as virtual screening, molecular docking and QSAR methods of and their applications in the drug discovery and development programme have been summarized.
 Keywords: Virtual screening, Molecular docking, QSAR, Drug discovery, Lead molecule

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.