Abstract

Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with “CM-biomimetic peptides” on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0–400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.

Highlights

  • IntroductionColorectal cancer is the third most common cancer globally [1]

  • We proposed the use of support vector machine (SVM)-based predictors and the ensemble approach to identify the potential anticancer peptides (ACPs) candidates from the Cordyceps militaris peptide dataset

  • Redesigns were performed to improve the predicted scores, and the biomimetic peptides were experimentally tested with both the non-metastasis colorectal cancer cell line HT-29 and the human dermal fibroblast cell line to ensure the specific effects on cancer cell lines

Read more

Summary

Introduction

Colorectal cancer is the third most common cancer globally [1]. Even though the standard treatments, such as surgery and radiotherapy, can effectively treat several cancer cases, chemotherapy is the most common treatment performed on advanced metastasis diseases. Chemotherapeutic drugs typically aim to destroy rapidly dividing cells and inadvertently attack healthy cells and tissues, which results in a considerable number of unfavorable side effects [3]. The advent of modern molecular biology brought short peptides which could inhibit a wide range of microbes (bacteria and fungi) [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call