Abstract

Xanthine oxidase (XO) inhibitory peptides are safer than conventional pharmacological therapy in relieving hyperuricemia. However, traditional enzymatic hydrolysis, separation, and purification techniques for bio-active peptide preparation are time-consuming, inefficient, and labor-intensive. In this study, molecular docking and BLAST were used to virtually screen XO inhibitory peptides from whole protein sequences of Pacific white shrimp according to the bio-active peptides database, and the structure of peptides was optimized based on the structure-effective relationship. Seven new XO inhibitory peptides were virtual screened rapidly from Pacific white shrimp, and YNITGW (IC50=9.78±0.13mM) showed the strongest activity. The results of YNITGW optimization showed that the insertion of Trp residue in the middle position of peptides could effectively enhance the activity. This study revealed that screening and optimizing peptides by molecular docking were a novel and feasible method to obtain bio-active peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call