Abstract
Dileptons produced during heavy-ion collisions represent a unique probe of the QCD phase diagram, and convey information about the state of the strongly interacting system at the moment their preceding off-shell photon is created. In this study, we compute thermal dilepton yields from Au+Au collisions performed at different beam energies, employing a (3+1)-dimensional dynamic framework combined with emission rates accurate at next-to-leading order in perturbation theory and which include baryon chemical potential dependencies. By comparing the effective temperature extracted from the thermal dilepton invariant mass spectrum with the average temperature of the fluid, we offer a robust quantitative validation of dileptons as an effective probe of the early quark-gluon plasma stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.