Abstract

Many imaging applications require high speed acquisition, storage, processing and display of large size images (over 10k X 10k pixels). Such applications include remote sensing, medical imaging, electron microscopy, publishing and document/photograph processing. Most existing image processors and special purpose acquisition devices have limitations on the image size being acquired (usually 4096 X 4096 pixels). Storage of these large images, sometimes with multiple bands takes a lot of storage space. The available storage devices that have large storage capacity cannot keep up with the transfer speed requirements. The ideal storage device should provide both high storage capacity and high transfer speeds. Processing these large images requires a large amount of Random Access Memory (RAM), and the image has to be broken into smaller sections (sub-images). The processed image is usually rebuilt from the subimages, resulting in visible boundaries between the subimages. Even though devices that display images of up to 2048 X 2048 in size are available today, they still display only a small portion of a large image at a time. In order to display the entire image, the display window has to be roamed in the image data base. In this paper we will discuss a system architecture suitable for processing such large images. This system performs acquisition, storage, display and processing of large image databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.