Abstract

A virtual bipolar photogalvanic cell was developed using Visual Basic. On the basis of the simulation, it is indicated that the charge separation (kd) and the charge recombination (kr) rate constants can be estimated using the photocurrent response. The thickness of the charge separation region can be anticipated by photocurrent response at various layer thicknesses. The increase in diffusion coefficients raises the short-circuit photocurrent to enhance the performance of the photogalvanic cell. An actual device was fabricated using tris(bipyridine)ruthenium(II) complex ([Ru(bpy)3]) as a sensitizer and Prussian Blue as a mediator. This device worked as a photogalvanic cell: short-circuit photocurrent (JSC), 2.3μA/cm2; open-circuit photovoltage (VOC), 0.118V; fill-factor, 20.5 %. It was shown from the action spectrum that electrons are transferred from [Ru(bpy)3] to Prussian Blue. The charge separation and the recombination rate constants were estimated, using the virtual device, to be 5 102 mol-1cm3s-1 and 6 109 mol-1cm3s-1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.