Abstract

Use of flexible link robots is motivated by applications featuring lightweight or long arms. However, the control problem faces strong technical challenges resulting from the complex dynamics. In this paper, the virtual decomposition control (VDC) approach is applied for the first time to address the technical challenges of this thorny problem mainly resulting from the dynamic coupling effects among flexible links. In view of the VDC approach, the control problem of a multiple-flexible-link robot is no more complex than the control problem of individual flexible links subject to kinematics constraints. A planar beam governed by Euler-Bernoulli equation is studied as an example for simplicity. A possible extension to robots with multiple flexible links is theoretically possible by creating appropriate virtual power flows at the two ends of each beam. The validity of the theoretical results is verified by simulations with respect to two typical space systems in planar motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.