Abstract

Abstract In this paper, a stability-guaranteed Cartesian free-space motion control for the redundant articulated hydraulic construction crane is addressed in order to increase system safety and productivity. To cope with the nonlinearities of coupled mechanical linkage dynamics of articulated systems and the inherently strong nonlinearities of hydraulic actuator dynamics, the proposed controller is designed based on the recently introduced Virtual Decomposition Control (VDC) approach. The VDC approach, which was developed especially for the control of complex robotic systems, allows the conversion of the control problem of the entire system to a control problem of individual subsystems, while rigorously guaranteeing the stability of the entire hydraulic system. In the experiments it is demonstrated that, the proposed controller is able to extensively cope with the highly nonlinear nature of the articulated hydraulic system, and an improved control performance is achieved compared to the current state-of-the-art studies in the category of the hydraulic robot manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.