Abstract

Ker NL is a general kernel-based framework for auto calibrated reconstruction method, which does not need any explicit formulas of the kernel function for characterizing nonlinear relationships between acquired and unacquired k-space data. It is non-iterative without requiring a large amount of computational costs. Since the limited autocalibration signals (ACS) are acquired to perform KerNL calibration and the calibration suffers from the overfitting problem, more training data can improve the kernel model accuracy. In this work, virtual conjugate coil data are incorporated into the KerNL calibration and estimation process for enhancing reconstruction performance. Experimental results show that the proposed method can further suppress noise and aliasing artifacts with fewer ACS data and higher acceleration factors. Computation efficiency is still retained to keep fast reconstruction with the random projection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call