Abstract
BackgroundThis study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.MethodsA total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images. Deep-based radiomic features were extracted from the fusion images using a deep learning model (ResNet18). These features, along with handcrafted radiomics, were utilized to construct a radiomic signature (R-signature) using automatic machine learning in the training and internal validation cohort. The R-signature was then tested for its predictive ability in the t-FL test cohort. Subsequently, this R-signature was combined with clinical parameters and SUVmax to develop a t-FL scoring system.ResultsThe R-signature demonstrated high accuracy, with mean AUC values as 0.994 in the training cohort and 0.976 in the internal validation cohort. In the t-FL test cohort, the R-signature achieved an AUC of 0.749, with an accuracy of 75.2%, sensitivity of 68.0%, and specificity of 77.5%. Furthermore, the t-FL scoring system, incorporating the R-signature along with clinical parameters (age, LDH, and ECOG PS) and SUVmax, achieved an AUC of 0.820, facilitating the stratification of patients into low, medium, and high transformation risk groups.ConclusionsThis study offers a promising approach for identifying t-FL non-invasively by radiomics analysis on PET/CT images. The developed t-FL scoring system provides a valuable tool for clinical decision-making, potentially improving patient management and outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have