Abstract

Abstract Green energy production is expanding in individual and large-scale electricity grids, driven by the imperative to reduce greenhouse gas emissions. This research performs a comparative analysis of several linear and non-linear regression models, intending to identify the most effective method to estimate the active power produced for a mini wind turbine using meteorological variables, looking for a reliable virtual sensor. The modeling process followed a feature selection step before applying eight machine learning techniques whose results were statistically analysed to determine the best performance. The implemented virtual sensor accurately estimated the active power, being an interesting tool for anomaly detection, maintenance management or decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.