Abstract

Free energy simulation method is applied to calculate the virial coefficients of square-well (SW) fluids of variable well-width and square-well based dimer forming associating fluids. In this approach, Monte Carlo sampling is performed on a number of molecules equal to the order of integral, and configurations are weighted according to the absolute value of the integrand. An umbrella-sampling average yields the value of the cluster integral in reference to a known integral. By using this technique, we determine the virial coefficients up to B 6 for SW fluid with variable potential range from λ = 1.25 to λ = 3.0 and model associating fluids with different association strengths: ɛ af = 0.0, 8.0, 16.0 and 22.0. These calculated values for SW fluids are in good agreement with the literature. We examine these coefficients in the context of the virial equation of state (VEOS) of SW fluids. VEOS up to B 4 or up to B 6 describes the PVT behavior along the saturated vapor line better than the series that includes B 5. We used these coefficients to find the critical properties of SW fluids and compared with the literature values. Boyle temperature is also determined and is found to increase with the increase in the well-extent and associating strength. We also report Joule–Thomson inversion curve for Lennard–Jones fluid and SW fluids using different truncated VEOS and compared with that predicted from established EOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.