Abstract

In this paper, we propose a general implementation of the Virasoro generators and Kac-Moody currents in generic tensor network representations of 2-dimensional critical lattice models. Our proposal works even when a quantum Hamiltonian of the lattice model is not available, which is the case in many numerical computations involving numerical blockings. We tested our proposal on the 2d Ising model, and also the dimer model, which works to high accuracy even with a fairly small system size. Our method makes use of eigenstates of a small cylinder to generate descendant states in a larger cylinder, suggesting some intricate algebraic relations between lattice of different sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.