Abstract

Viruses have evolved strategies to evade immunity mediated by antibody and complement. Herpesviruses and coronaviruses encode IgG Fc binding proteins that inhibit IgG activity, enabling the virus or infected cell to escape antibody attack. Herpesviruses, vaccinia virus and HIV-1 have the capacity to interfere with complement, either by incorporation of cellular complement regulatory proteins into the virion envelope or cell membrane, or by expression of viral molecules that mimic functions of complement regulatory proteins. The structure and biological activities of herpes simplex virus type 1 (HSV-1) glycoproteins gE, gI and gC are described. These glycoproteins protect HSV from immune attack; HSV-1 gE/gI form a complex that binds the Fc domain of IgG while gC is a C3b binding complement regulatory protein, providing a survival advantage to the virus in vitroand in vivoby inhibiting immune functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.