Abstract

A slowly activated, inward current could be evoked from Xenopus oocytes in response to application of a strong (approximately -190 mV) hyperpolarizing pulse. However, a much lesser hyperpolarization (approximately -130 mV) was able to evoke a similar current from oocytes that expressed the cellular proteins IsK and phospholemman, the synthetic protein SYN-C, and the NB protein of influenza B virus. All of these currents were carried principally by Cl-, and they had similar blocker profiles. The time course (the function of time that described the current increase during a hyperpolarizing voltage-clamp pulse, i.e., activation kinetics) varied from one batch of oocytes to another, but did not vary within each batch with the type of protein expressed. This slowly activated, inward current evoked by hyperpolarization to approximately -130 mV required the expression of a characteristic, minimum level of each of the proteins IsK, SYN-C, and NB. However, not every integral membrane protein expressed in oocytes allowed substantial inward currents to be generated at -130 mV. Oocytes that expressed large amounts of the M2 protein of influenza A virus, which is known to possess an intrinsic cation channel activity, did not display a Cl- current when hyperpolarized to -130 mV. These results suggest that expression of any of the four proteins-IsK, phospholemman, SYN-C, or NB- acts as an activator of an endogenous Cl- conductance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.