Abstract
The mass-action law, which predicts the rates of chemical reactions, is widely used for modeling the kinetics of the chemical reactions and their stationary states, also for complex chemical reaction networks. However, violations of the mass-action equations have been reported in various cases: in confined systems with a small number of molecules, in non-ideally-stirred systems, when the reactions are limited by the diffusion, at high concentrations of reactants, or in chemical reaction networks with marginally stable mass-action equations. In this paper, I describe a new mechanism, leading to the violation of the mass-action equations, that takes place at a low concentration of at least one of the reactants; in this limit, the reaction rates can be easily inferred from the chemical reaction network. I propose that this mechanism underlies the replication stability of the hypercycles, a class of chemical reaction networks hypothetically connected with abiogenesis. I provide two simple examples of chemical reaction networks in which the mechanism leading to the violation of the mass-action law is present. I study the two chemical reaction networks by means of a simulation performed with a cellular automaton model. The results have a general validity and represent a limitation of the validity of the mass-action law, which has been overlooked up to now in the studies about the chemical reaction networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.