Abstract

A class of chemical reaction networks is described with the property that each positive equilibrium is locally asymptotically stable relative to its stoichiometry class, an invariant subspace on which it lies. The reaction systems treated are characterized primarily by the existence of a certain factorization of their stoichiometric matrix and strong connectedness of an associated graph. Only very mild assumptions are made about the rates of reactions, and, in particular, mass action kinetics are not assumed. In many cases, local asymptotic stability can be extended to global asymptotic stability of each positive equilibrium relative to its stoichiometry class. The results are proved via the construction of Lyapunov functions whose existence follows from the fact that the reaction networks define monotone dynamical systems with increasing integrals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call