Abstract

Vimentin, an intermediate filament protein induced during epithelial-to-mesenchymal transition, is known to regulate cell migration and invasion. However, it is still unclear how vimentin controls such behaviors. In this study, we aimed to find a new integrin regulator by investigating the H-Ras-mediated integrin suppression mechanism. Through a proteomic screen using the integrin β3 cytoplasmic tail protein, we found that vimentin might work as an effector of H-Ras signaling. H-Ras converted filamentous vimentin into aggregates near the nucleus, where no integrin binding can occur. In addition, an increase in the amount of vimentin filaments accessible to the integrin β3 tail enhanced talin-induced integrin binding to its ligands by inducing integrin clustering. In contrast, the vimentin head domain, which was found to bind directly to the integrin β3 tail and compete with endogenous vimentin filaments for integrin binding, induced nuclear accumulation of vimentin filaments and reduced the amount of integrin-ligand binding. Finally, we found that expression of the vimentin head domain can reduce cell migration and metastasis. From these data, we suggest that filamentous vimentin underneath the plasma membrane is involved in increasing integrin adhesiveness, and thus regulation of the vimentin-integrin interaction might control cell adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call