Abstract

In this paper, we aim to design an effective learning-based channel state information (CSI) feedback scheme for the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems from a physics-inspired perspective. We first argue that the CSI matrix of a MIMO-OFDM system is physically closer to a two-dimensional (2-D) sequence rather than an image due to its apparent unsmoothness, non-scalability, and translational variance within both the spatial and frequency domains. On this basis, we introduce a 2-D long short-term memory (LSTM) neural network to represent the CSI and propose a 2-D sequence-to-sequence (Seq2Seq) model for CSI compression and reconstruction. Specifically, one two-layer 2-D LSTM is used for CSI feature extraction, and the other is used for CSI representation and reconstruction. The proposed scheme can not only fully utilize the unique 2-D characteristics of CSI but also preserve the index information and unsmooth features of the CSI matrix compared with current convolutional neural network (CNN) based schemes. We show that the computational complexity of the proposed scheme is linear in the number of transmit antennas and subcarriers. Its key performances, like reconstruction accuracy, convergence speed, generalization ability after short-term training, and robustness to lossy feedback, are comprehensively compared with existing popular convolutional networks. Experimental results show that our scheme can bring up to nearly 7 dB gain in reconstruction accuracy under the same overhead and reduce feedback overhead by up to 75% under the same accuracy compared with the conventional CNN-based approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call