Abstract

Estimating the 3D orientation of the camera in a video sequence within a global frame of reference is useful for video stabilization when displaying the video in a virtual 3D environment, as well as for accurate navigation and other applications. This task requires the input of orientation sensors attached to the camera to provide absolute 3D orientation in a geographical frame of reference. However, high-frequency noise in the sensor readings makes it impossible to achieve accurate orientation estimates required for visually stable presentation of video sequences that were acquired with a camera subject to jitter, such as a handheld camera or a vehicle mounted camera. On the other hand, image alignment has proven successful for image stabilization, providing accurate frame-to-frame orientation estimates but drifting over time due to error and bias accumulation and lacking absolute orientation. In this paper we propose a practical method for generating high accuracy estimates of the 3D orientation of the camera within a global frame of reference by fusing orientation estimates from an efficient image-based alignment method, and the estimates from an orientation sensor, overcoming the limitations of the component methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call