Abstract

In July 2003 the International Association of Geodesy (IAG) established the Global Geodetic Observing System (GGOS). The GGOS is integrating the three basic components: geometry, the earth rotation and gravity. The backbone of this integration is the existing global ground network, based on the geodetic space techniques: very long baseline interferometry, satellite laser ranging, global navigation satellite systems and Doppler orbitography and radiopositioning integrated by satellite. These techniques have to operate as one global entity and in one global reference frame. The global reference frame in the GGOS is a realization of the International Terrestrial Reference System (ITRS). The ITRS is a world spatial reference system co-rotating with the Earth in its diurnal motion in the space. The IAG Subcommision for the European Reference Frame (EUREF) in 1991 recommended that the terrestrial reference system for Europe should be coincident with ITRS at the epoch t 0 = 1989.0 and fixed to the stable part of the Eurasian Plate. It was named the European Terrestrial Reference System 89 (ETRS89). On the 2nd of June 2008, the Head Office of Geodesy and Cartography in Poland commenced operating the ASG-EUPOS multifunctional precise satellite positioning system. The ASG-EUPOS network defines the European Terrestrial Reference System ETRS89 in Poland. A close connection between the ASG-EUPOS stations and 15 out of 18 Polish EUREF permanent network stations controls the realization of the ETRS89 on Polish territory. This paper is a review of the global ITRS, as well as a regional and a national geodetic reference systems ETRS89.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call