Abstract

Video Synthetic Aperture Radar (SAR) has shown great potential in moving target detection and tracking. At present, most of the existing detection methods focus on the intensity information of the moving target shadow. According to the mechanism of shadow formation, some shadows of moving targets present low contrast, and their boundaries are blurred. Additionally, some objects with low reflectivity show similar features with them. These cause the performance of these methods to degrade. To solve this problem, this paper proposes a new moving target shadow detection method, which consists of background modeling and shadow detection based on intensity information and neighborhood similarity (BIIANS). Firstly, in order to improve the efficiency of image sequence generation, a fast method based on the Back-projection imaging algorithm (f-BP) is proposed. Secondly, due to the low-rank characteristics of stationary objects and the sparsity characteristics of moving target shadows presented in the image sequence, this paper introduces the low-rank sparse decomposition (LRSD) method to perform background modeling for obtaining better background (static objects) and foreground (moving targets) images. Because the shadows of moving targets appear in the same position in the original and the corresponding foreground images, the similarity between them is high and independent of their intensity. Therefore, using the BIIANS method can obtain better shadow detection results. Real W-band data are used to verify the proposed method. The experimental results reveal that the proposed method performs better than the classical methods in suppressing false alarms, missing alarms, and improving integrity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.