Abstract

Ultrasonography and photoacoustic tomography provide complementary contrasts in preclinical studies, disease diagnoses, and imaging-guided interventional procedures. Here, we present a video-rate (20 Hz) dual-modality ultrasound and photoacoustic tomographic platform that has a high resolution, rich contrasts, deep penetration, and wide field of view. A three-quarter ring-array ultrasonic transducer is used for both ultrasound and photoacoustic imaging. Plane-wave transmission/receiving approach is used for ultrasound imaging, which improves the imaging speed by nearly two folds and reduces the RF data size compared with the sequential single-channel scanning approach. GPU-based image reconstruction is developed to advance computational speed. We demonstrate fast dual-modality imaging in phantom, mouse, and human finger joint experiments. The results show respiration motion, heart beating, and detailed features in the mouse internal organs. To our knowledge, this is the first report on fast plane-wave ultrasound imaging and single-shot photoacoustic computed tomography in a ring-array system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.