Abstract
Interrogation of subcellular biological dynamics occurring in a living cell often requires noninvasive imaging of the fragile cell with high spatiotemporal resolution across all three dimensions. It thereby poses big challenges to modern fluorescence microscopy implementations because the limited photon budget in a live-cell imaging task makes the achievable performance of conventional microscopy approaches compromise between their spatial resolution, volumetric imaging speed, and phototoxicity. Here, we incorporate a two-stage view-channel-depth (VCD) deep-learning reconstruction strategy with a Fourier light-field microscope based on diffractive optical element to realize fast 3D super-resolution reconstructions of intracellular dynamics from single diffraction-limited 2D light-filed measurements. This VCD-enabled Fourier light-filed imaging approach (F-VCD), achieves video-rate (50 volumes per second) 3D imaging of intracellular dynamics at a high spatiotemporal resolution of ~180 nm × 180 nm × 400 nm and strong noise-resistant capability, with which light field images with a signal-to-noise ratio (SNR) down to -1.62 dB could be well reconstructed. With this approach, we successfully demonstrate the 4D imaging of intracellular organelle dynamics, e.g., mitochondria fission and fusion, with ~5000 times of observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.