Abstract

SummaryTo reduce heavy noise from degraded video in low or predictable latency and preserve privacy, a powerful and efficient video denoising algorithm is proposed based on fog computing for Visual Internet of Things. The conventional method is to remove noise in the cloud; however, this may overload computation and communication and raise security and privacy issues. The proposed denoising algorithm is distributed to heterogeneous devices at network edges to preserve privacy and avoid security risks as noise can be reduced in the fog rather than the cloud. To address the problems of latency, communication rate, and extremely heavy noise, structure registration, inter‐frame and inner‐frame filters, and distribution compensation are applied in the proposed algorithm. A scheme for encrypting the denoised data at network edges is provided so that security and privacy issues may be avoided during transmission and storage. Compared with other denoising approaches under extremely heavy noise conditions, the experimental results demonstrate that the proposed approach achieves superior denoising performance in terms of peak signal‐noise ratio and visual quality at low computational cost, high bandwidth efficiency, and low‐latency response in a fog computing manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.