Abstract

Recent progress in using long short-term memory (LSTM) for image captioning has motivated the exploration of their applications for video captioning. By taking a video as a sequence of features, an LSTM model is trained on video-sentence pairs and learns to associate a video to a sentence. However, most existing methods compress an entire video shot or frame into a static representation, without considering attention mechanism which allows for selecting salient features. Furthermore, existing approaches usually model the translating error, but ignore the correlations between sentence semantics and visual content. To tackle these issues, we propose a novel end-to-end framework named aLSTMs, an attention-based LSTM model with semantic consistency, to transfer videos to natural sentences. This framework integrates attention mechanism with LSTM to capture salient structures of video, and explores the correlation between multimodal representations (i.e., words and visual content) for generating sentences with rich semantic content. Specifically, we first propose an attention mechanism that uses the dynamic weighted sum of local two-dimensional convolutional neural network representations. Then, an LSTM decoder takes these visual features at time $t$ and the word-embedding feature at time $t$ $-$ 1 to generate important words. Finally, we use multimodal embedding to map the visual and sentence features into a joint space to guarantee the semantic consistence of the sentence description and the video visual content. Experiments on the benchmark datasets demonstrate that our method using single feature can achieve competitive or even better results than the state-of-the-art baselines for video captioning in both BLEU and METEOR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.