Abstract

Numerous factors affect reaction times to vibrotactile cues. Therefore, it is important to consider the relative magnitudes of these time delays when designing vibrotactile displays for real-time applications. The objectives of this study were to quantify reaction times to typical vibrotactile stimuli parameters through direct comparison within a single experimental setting, and to determine the relative importance of these factors on reaction times. Young (n = 10, 21.9 ± 1.3 yrs) and older adults (n = 13, 69.4 ± 5.0 yrs) performed simple reaction time tasks by responding to vibrotactile stimuli using a thumb trigger while frequency, location, auditory cues, number of tactors in the same location, and tactor type were varied. Participants also performed a secondary task in a subset of the trials. The factors investigated in this study affected reaction times by 20–300 ms (reaction time findings are noted in parentheses) depending on the specific stimuli condition. In general, auditory cues generated by the tactors (<20 ms), vibration frequency (<20 ms), number of tactors in the same location (<30 ms) and tactor type (<50 ms) had relatively small effects on reaction times, while stimulus location (20–120 ms) and secondary cognitive task (>130 ms) had relatively large effects. Factors affected young and older adults’ reaction times in a similar manner, but with different magnitudes. These findings can inform the development of vibrotactile displays by enabling designers to directly compare the relative effects of key factors on reaction times.

Highlights

  • Vibrotactile displays, one common type of haptic displays [1], have been applied to various areas of the body to deliver spatial and temporal information in a variety of real-time applications including sensory augmentation devices [2,3]

  • To inform vibrotactile display design for real-time applications, this study quantitatively examined reaction times (RTs) to vibrotactile stimuli as a function of various factors through direct comparison within a single experimental setting in young adults and older adults using simple reaction time tasks

  • Fixed factors included the type of vibrotactile stimuli (Part I), tactor location and presence of auditory cues generated by the vibration (ACV) (Part II); stimulation pattern (Part III), and location of tactors and presence of secondary task (Part IV)

Read more

Summary

Introduction

Vibrotactile displays, one common type of haptic displays [1], have been applied to various areas of the body to deliver spatial and temporal information in a variety of real-time applications including sensory augmentation devices [2,3]. Vibrotactile displays provide navigation information [4] and warn drivers of potential collisions [5,6]. During flying, they can provide altitude information, warning signals and simple communication to replace or reinforce visual and auditory cues [7,8]. Vibrotactile displays have been applied to virtual reality applications to enhance physical sensations within a virtual environment [9,10].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call