Abstract
Multiresonant coherent anti-Stokes Raman spectroscopy is performed with three tunable lasers on perylene doped polymethylmethacrylate (PMMA). Sharp vibronic features can be observed in vibronic scans at constant energy from the parent electronic transition when resonance is established within the inhomogeneously broadened electronic band. These features are attributed to the nonlinear line narrowing predicted by Ouellette and Denariez-Roberge for a higher order saturated coherent anti-Stokes Raman process since line narrowing should be absent for four wave mixing coherent anti-Stokes Raman spectroscopy. It is shown that the features are sharply dependent on the presence of a simultaneous vibrational resonance as is also predicted by the higher order coherent anti-Stokes Raman model. Excited state coherent anti-Stokes Raman spectroscopy with resonance enhancement from higher singlet states does not contribute to the narrow features since such a process would not have vibrational resonances. Conventional two laser coherent anti-Stokes Raman shows only a weak line at the vibronic transition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.