Abstract
The fine-structure fluorescence and fluorescence excitation spectra of conjugated chain compounds—1,4-di(5-phenyl-2-oxazolyl) benzene and its oxadiazol analogue—are obtained at 4.2 K in an n-octane matrix using the Shpolskii method. The spectra are modeled by representing the band of each of the vibronic transitions as the sum of a zero-phonon line and a phonon wing with certain parameters (half-widths, Debye-Waller factors). The spectra calculated in this fashion coincide with the experimental spectra. This makes it possible to determine the relative intensities of vibronic transitions and refine the frequencies of the normal vibrations in the S0 and S*1 states. The parameters of the Franck-Condon and Herzberg-Teller interactions in the molecules considered are determined. The influence of the replacement of one of the CH groups in the heterocycles with a N atom on the parameters determining the formation of vibronic spectra is considered.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have