Abstract

ObjectiveThe objective of this study is to analyze the noise mechanism of dental air turbine handpiece with vibroacoustic simulation.Materials and methodsThe operational part of the Gentle Silence Lux 8000B (KaVo Dental GmbH) was disassembled and scanned. The scanned data were rendered to smooth irregularities and then virtually reassembled. The rendering was 3D mesh modeled for the analysis. And, the interior void space and exterior space was mesh modeled as air layer. As per simulation input informations, the material property of steel was provided for the handpiece components. Supplied air pressure of 0.22 MPa at the inlet and static temperature of 25 °C was provided as operating conditions. Twenty virtual microphones were arrayed to measure the noise. Vibroacoustic noise simulation was performed with ACTRAN 2021 (MSC software corporation).ResultsThe mean value of noise ranged from 49.88 to 66.38 dB while the peak value ranged from 69.53 to 81.64 dB depending on the microphone position. All microphones showed the similar noise pattern which had peak amplitude at around 4500 Hz. The calculated natural frequency of interior air layer was 4478.92 Hz and 7573.77 Hz.DiscussionThe simulated result showed similar tonal noise of dental handpiece suggesting air resonance phenomenon as a possible cause of dental handpiece noise.ConclusionVibroacoustic analysis of the air layer contained within the dental air turbine handpiece showed the resonance peak noise at 4478.92 Hz under the simulated conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.