Abstract
The review summarizes literature data on the Vibrio cholerae secretion system of the 6th type. This system is a contact-dependent macromolecular mechanism through which bacteria translocate toxic effector proteins into target cells. It is found in many Gram-negative bacteria, including Vibrio cholerae. V. cholerae infects phagocytic amoebae, nematodes, ciliates, bacteria belonging to different species, as well as unrelated strains of V. cholerae using this system. DNA released after lysis of competing bacteria can be taken up by Vibrio cholerae cells, which leads to the acquisition of new genetic material. The type VI secretion system is involved in the infectious process. The destruction of macrophages and microbiota contributes to the active reproduction of the pathogen and colonization of host epitheliocytes, and the production of effector proteins causes the development of diarrhea and intestinal inflammation. Cholera vibrio secretion system of the 6th type has a structure similar to other gram-negative bacteria. The genes encoding the proteins of this system are located in one large region of the second chromosome and in several additional clusters. It has been shown that toxigenic strains of V. cholerae contain an identical set of secretion system genes, while their composition is variable in non-toxigenic isolates. The regulation of secretion system protein expression differs in V. cholerae strains of different toxigenicity, depends on a number of environmental signals, and is associated with other cell regulatory networks. The paper provides experimental data on the analysis of the structure of the global regulatory gene, vasH, of the type VI secretion system in toxigenic and non-toxigenic V. cholerae O1, biovar El Tor strains isolated in the Russian Federation. Thus, the type VI secretion system is an important mechanism that facilitates the survival of V. cholerae in complex communities in vitro, protects against damaging factors of the macroorganism and increases virulence in vivo, and also provides evolutionary transformations of cholera vibrio. Further study of this system will allow a better understanding of the pathogen-host interaction processes, as well as the adaptation mechanisms of V. cholerae in the external environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have