Abstract
Overexposure to hand transmitted vibrations (HTVs) from prolonged use of vibrating power tools can result in severe injuries. By monitoring the exposure of a worker to HTVs, overexposure, and injury, can be mitigated. An ideal HTV-monitoring system would measure vibration were it enters the body, which for many power tools will be the palm and fingers, however this is difficult to achieve using conventional transducers as they will affect the comfort of the user and subsequently alter the way that the tool is held. By embedding a transducer within the core of a textile yarn, that can be used to produce a glove, vibration can be monitored close to where it enters the body without compromising the comfort of the user. This work presents a vibration-sensing electronic yarn that was created by embedding a commercially available accelerometer within the structure of a yarn. These yarns were subsequently used to produce a vibration-sensing glove. The purpose of this study is to characterize the response of the embedded accelerometer over a range of relevant frequencies and vibration amplitudes at each stage of the electronic yarn’s manufacture to understand how the yarn structure influences the sensors response. The vibration-sensing electronic yarn was subsequently incorporated into a fabric sample and characterized. Finally, four vibration-sensing electronic yarns were used to produce a vibration-sensing glove that is capable of monitoring vibration at the palm and index finger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.