Abstract

Electronic yarns contain electronic components which are fully embedded into the conductive yarn’s structure before manufacturing smart textile garments or fabrics. To accept comprehensively the electronic textiles, it is essential to integrate the electronic components into/onto the conductive textile yarn without compromising the quality of the textile substrate. Therefore, one of the solutions is to create flexible and stretchable conductive yarn that contains a small surface-mounted electronic component embedded in the fibers of the conductive yarn. The purpose of this research work is to manufacture and subsequently evaluate the physical and electromechanical properties of amber strand (Toyobo’s p-phenylene benzobisoxazole fiber zylon) yarns with embedded surface-mounted device components. Using a benchtop reflow-soldering machine, the surface-mounted device component was successfully inserted into the amber strand conductive yarn. Then the developed electronic yarn was coated using thermoplastic polyurethane for encapsulation purposes. Furthermore, reliability tests of the electrical and mechanical properties of the electronic yarn (tensile strain and washing) were carried out. From the results it can be seen that the developed thermoplastic polyurethane encapsulated electronic yarn had a tensile strength of 37.38 N with a 4.1 mm extension. Furthermore, the relationship between the strain and washing action on the electrical resistance of the developed electronic yarn was experimentally investigated. The analytical finding shows that mechanical stress and laundry washing had a significant influence on the electrical resistance of the electronic yarn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call