Abstract

The model introduced in Part I of the present study is extended to take into account a flowing fluid, a mean radial pressure and initial pre-stress in circular cylindrical shells. The axial flow can be external, internal or annular and is described by the potential theory for inviscid and incompressible fluid. The computer program DIVA has been developed. It takes into account all the following complicating effects on the vibrations of circular cylindrical shells: (i) nonuniform boundary conditions around the shell edges including elastic boundary conditions; (ii) fluid–structure interaction including both flowing and quiescent fluids; (iii) internal, external and annular fluids; (iv) effect of a mean radial pressure and initial pre-stress; (v) elastic bed of partial extension in circumferential and longitudinal directions; (vi) intermediate constraints; (vii) added masses. It can be considered the most complete computer program specifically dedicated to dynamics of circular cylindrical shells. The Flügge theory of shells is used to describe the shell deformations. The system has been proved to be conservative for any combination of boundary conditions with restrained displacement at the shell ends. Numerical results show that shells clamped at the upstream end and simply supported at the downstream end have a larger critical velocity than simply supported shells, solving the paradox of Horáček and Zolotarev.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.