Abstract

Abstract The paper deals with free and forced vibrations of a horizontal thin elastic plate submerged in an infinite layer of fluid of constant depth. In free vibrations, the pressure load on the plate results from assumed displacements of the plate. In forced vibrations, the fluid pressure is mainly induced by water waves arriving at the plate. In both cases, we have a coupled problem of hydrodynamics in which the plate and fluid motions are coupled through boundary conditions at the plate surface. At the same time, the pressure load on the plate depends on the gap between the plate and the fluid bottom. The motion of the plate is accompanied by the fluid motion. This leads to the so-called co-vibrating mass of fluid, which strongly changes the eigenfrequencies of the plate. In formulation of this problem, a linear theory of small deflections of the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation is constructed in the doubly connected infinite fluid domain. To this end, this infinite domain is divided into sub-domains of simple geometry, and the solution of the problem equation is constructed separately for each of these domains. Numerical experiments are conducted to illustrate the formulation developed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.