Abstract
Abstract Desirable conditions of airflow should be provided for spillway chute aerators in two-phase air-water flow, especially in large-width chutes. There is no general approach to determine air entrainment, concentration distribution, and submergence along a chute introduced by an aerator shaft. The two-phase air-water modeling of Gavoshan dam in Iran as a case study of chute flow, its aerator, and the characteristics of flow into the cavity formed below the jet have been numerically investigated, and the results obtained have been validated against the laboratory experiments. The hydraulic parameters of the cavity and aerator shaft were determined to evaluate their performance and emphasize the importance of a proper aerator design. Sections with a greater distance from the bottom of the chute exhibit higher pressure magnitudes, while the mean air concentration values in the cavity are smaller in sections close to a ramp. Higher water discharge, lower pressure head in sections near the bottom of the cavity, and lower air concentration in sections near the ramp into the cavity increase the probability of cavitation occurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives of Hydro-Engineering and Environmental Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.