Abstract

We present a detailed theoretical study of the solvation structure and solvent induced vibrational shifts for an OCS molecule embedded in pure parahydrogen clusters and in mixed parahydrogen/helium clusters. The use of two recent OCS-(parahydrogen) and OCS-helium ab initio potential energy surfaces having explicit dependence on the asymmetric stretch of the OCS molecule allows calculation of the frequency shift of the OCS nu(3) vibration as a function of the cluster size and composition. We present results for clusters containing up to a full first solvation shell of parahydrogen (N=17 molecules), and up to M=128-N helium atoms. Due to the greater interaction strength of parahydrogen than helium with OCS, in the mixed clusters the parahydrogen molecules always displace He atoms in the first solvation shell around OCS and form multiple axial rings as in the pure parahydrogen clusters. In the pure clusters, the chemical potential of parahydrogen shows several magic numbers (N=8,11,14) that reflect an enhanced stability of axial rings containing one less molecule than required for complete filling at N=17. Only the N=14 magic number survives in the mixed clusters, as a result of different filling orders of the rings and greater delocalization of both components. The OCS vibration shows a redshift in both pure and mixed clusters, with N-dependent values that are in good agreement with the available experimental data. The dependence of the frequency shift on the cluster size and its composition is analyzed in terms of the parahydrogen and helium density distributions around the OCS molecule as a function of N and M. The frequency shift is found to be strongly dependent on the detailed distribution of the parahydrogen molecules in the pure parahydrogen clusters, and to be larger but show a smoother dependence on N in the presence of additional helium, consistent with the more delocalized nature of the mixed clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.