Abstract

Recent experiments have demonstrated the breakdown of the Born-Oppenheimer approximation when NO undergoes inelastic scattering from a Au(111) surface. In this paper, we provide a simple theoretical model for understanding this phenomenon. Our model predicts multiquanta vibrational relaxation through the creation of high-energy electron-hole pair excitations in the metal. Using experimentally determined parameters, our model gives qualitatively accurate predictions for the final vibrational state populations of the scattered molecule and predicts efficient conversion of vibrational energy into electronic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.