Abstract

The vibrational relaxation of NO molecules scattering from a Au(111) surface has served as the focus of efforts to understand nonadiabatic energy transfer at metal-molecule interfaces. Experimental measurements and previous theoretical efforts suggest that multiquantal NO vibrational energy relaxation occurs via electron-hole pair excitations in the metal. Here, using a linearized semiclassical approach, we accurately predict the vibrational relaxation of NO from the νi = 3 state for different incident translational energies. We also accurately capture the central role of transient electron transfer from the metal to the molecule in mediating the vibrational relaxation process but fall short of quantitatively predicting the full extent of multiquantum relaxation for high incident vibrational excitations (νi = 16).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call