Abstract

Static and ultrafast infrared spectroscopy have been used to measure absorption spectra and vibrational energy relaxation (VER) times for the antisymmetric stretching vibrational band of azide, N(3)(-), in formamide-containing reverse micelles (RMs). RMs were formed in n-heptane using the surfactant AOT, sodium bis(2-ethylhexyl) sulfosuccinate. The VER times were found to be significantly longer than in bulk formamide. The VER times became longer as the molar ratio of formamide to AOT, omega(F), was decreased. Decreasing omega(F) also resulted in substantial blue shifts of the azide static absorption band compared to the frequency in bulk formamide. The omega(F) dependent studies are consistent with expected size trends, where a larger RM results in more bulklike polar solvent and faster VER rates. These results are in contrast to aqueous AOT RMs where VER times were indistinguishable from those in the bulk and the static spectral shifts were much smaller. The differences between the static and dynamic behavior in aqueous and formamide RMs are related to differences in structural changes upon confinement in RMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call