Abstract
In this paper, the effect of non-ideal boundary conditions and initial stresses on the vibration of laminated plates on Pasternak foundation is studied. The plate has simply supported boundary conditions and is assumed that one of the edges of the plate allows a small non-zero deflection and moment. The initial stresses are due to in-plane loads. The vibration problem is solved analytically using the Lindstedt–Poincare perturbation technique . So the frequencies and mode shapes of the plate with non-ideal boundary condition is extracted by considering the Pasternak foundation and in-plane stresses. The results of finite element simulation , using ANSYS software, are presented and compared with the analytical solution. The effect of various parameters like stiffness of foundation, boundary conditions and in-plane stresses on the vibration of the plate is discussed. Dependency of non-ideal boundary conditions on the aspect ratio of the plate for changing the frequencies of vibrations is presented. The relation between the shear modulus of elastic foundation and the frequencies of the plate is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.