Abstract

A non-ideal boundary condition is modeled as a linear combination of the ideal simply supported and the ideal clamped boundary conditions with the weighting factors k and 1-k, respectively. The proposed non-ideal boundary model is applied to the free vibration analyses of Euler-Bernoulli beam and Timoshenko beam. The free vibration analysis of the Euler-Bernoulli beam is carried out analytically, and the pseudospectral method is employed to accommodate the non-ideal boundary conditions in the analysis of the free vibration of Timoshenko beam. For the free vibration with the non-ideal boundary condition at one end and the free boundary condition at the other end, the natural frequencies of the beam decrease as k increases. The free vibration where both the ends of a beam are restrained by the non-ideal boundary conditions is also considered. It is found that when the non-ideal boundary conditions are close to the ideal clamped boundary conditions the natural frequencies are reduced noticeably as k increases. When the non-ideal boundary conditions are close to the ideal simply supported boundary conditions, however, the natural frequencies hardly change as k varies, which indicate that the proposed boundary condition model is more suitable to the non-ideal boundary condition close to the ideal clamped boundary condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.