Abstract

Various failures in electronic systems, particularly in the connections between the printed circuit board (PCB) and components, are due to mechanical shock and vibration. The vibration characteristic of a plug-in PCB in an airborne electronic case (AEC) was studied first by finite element modeling (FEM) and experimental techniques. The coupling method and torsional spring elements were used in FEM to better simulate the PCB’s realistic boundary condition. A reasonable correlation between simulation and test results was obtained. Since the fundamental frequency is one of the most important dynamic characteristics of PCB, the orthogonal design and variance analysis, as well as FEM method, were discussed subsequently to investigate the effects of different factors. Analysis results demonstrate a good correlation with current studies. Finally, a general design guideline was presented to maximize the PCB’s fundamental frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call