Abstract
Natural fibre composites attract industries because of their low density, low cost and the specific mechanical properties they possess in comparison to synthetic fibres. In this work, the randomly oriented sisal fibre–reinforced polypropylene composites are fabricated using extrusion–injection moulding technique. The aim of this study is to experimentally investigate the effect of fibre weight fraction (0%–30% in step of 10%) on vibrational damping and acoustic characteristics. The impulse hammer excitation technique is used to evaluate the free vibrational characteristics, namely, natural frequency and damping. An impedance tube is used in evaluating the acoustic properties, namely, sound absorption coefficient and transmission loss. Experimental results reveal that increase in fibre loading significantly alter the vibrational and acoustic response of the polypropylene composite. Modal analysis shows that incorporation of sisal fibres by 30 wt.% to polypropylene made the natural frequency superior when compared with other compositions. However, damping becomes worse with higher fibre content. In case of acoustic properties, incorporation of fibres at higher fraction enhances the sound absorption coefficient and transmission loss. Experimental results drive the research in development of such new materials system towards the application of vibration and sound diminutions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.