Abstract

The Shandong Binzhou Yellow River Highway Bridge is a three-tower, cable-stayed bridge in Shandong Province, China. Because the stay cables are prone to vibration, 40 magnetorheological (MR) fluid dampers were attached to the 20 longest cables of this bridge to suppress possible vibration. An innovative control algorithm for active and semiactive control of mass-distributed dynamic systems, e.g., stay cables, was proposed. The frequencies and modal damping ratios of the unimpeded tested cable were identified through an ambient vibration test and free vibration tests, respectively. Subsequently, a series of field tests were carried out to investigate the control efficacy of the free cable vibrations achieved by semiactive MR dampers, “Passive-off” MR dampers and “Passive-on” MR dampers. The first three modal damping ratios of the cable incorporated with the MR dampers were also identified from the in situ experiments. The field experiment results indicated that the semiactive MR dampers can provide significantly greater supplemental damping for the cable than either the Passive-off or the Passive-on MR dampers because of the pseudonegative stiffness generated by the semiactive MR dampers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call