Abstract

In the balancing of a flexible rotor, insufficient damping for a rotor-bearing system may cause excessive vibrations in trial runs. In addition, conventional modal balancing methods are generally time-consuming because they try to balance the rotor one mode at a time. To overcome these issues, we developed a control system using multilayer piezoelectric actuators in order to suppress the vibration of a flexible rotor and to estimate its modal unbalances simultaneously. The H-infinity controller was designed to achieve robust performance for an uncertainty of the system, and its damping ability was examined in free and forced vibration tests. Large reductions were observed in the response near resonance. Then, steady-state responses of the system excited by sinusoidal forces were measured to investigate the estimation accuracy of sinusoidal external forces, and good agreement was observed between the estimated and the experimental results. Furthermore, it was demonstrated that feedforward plus feedback control using the estimated modal force significantly improved the performance of suppression of flexible shaft vibrations compared with simple feedback control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.